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Abstract In this paper we investigate toroidal carbon nanotubes (carbon nanotori)
encapsulating a single symmetrically located carbon atomic-chain. The interaction
energy of the carbon chain is found from the Lennard-Jones potential using the con-
tinuous approach which assumes that atoms are uniformly distributed over the surface
of the torus and the line of the circular chain with constant atomic surface and line den-
sities, respectively. We assume that the chain is centrally located and that the carbon
nanotorus is synthesized from a perfect carbon nanotube. We predict that the carbon
chain can be encapsulated inside the carbon nanotorus when the cross-sectional radius
r of the nanotorus is larger than 3.17 Å. At the minimum energy, a value of the toroidal
radius R lies between 3.6 and 3.7 Å corresponding to each value of r . We also inves-
tigate the energy of carbon chains inside carbon nanotubes, which are (4,4), (5,5) and
(10,0) tubes. We find that they are energetically favourable in (5,5) and (10,0) tubes,
but not in a (4,4) tube, because it is geometrically too small, and these results are in
agreement with existing studies. The same results for these three carbon nanotubes
can also be obtained from the corresponding nanotori when R goes to infinity.
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1 Introduction

Since carbon nanotubes (CNTs) were discovered by Iijima [1] in 1991, experiments
for many new potential nanodevices have been investigated. Single-walled carbon
nanotube (SWCNT) may be envisaged from a graphene sheet which is rolled up
forming a seamless tube [2], and multi-walled carbon nanotubes (MWCNTs) are
assumed to be formed as concentric distinct radii SWCNTs [3]. Their mechanical
properties are unique such as high strength, low weight, high flexibility and novel
electronic properties [4]. Due to these properties, SWCNTs and MWCNTs have been
used for many applications [5–7]. For example, CNTs might be used as high frequency
nano-oscillators which can generate frequency in the gigahertz range [5,6], so that
these nano-oscillators might be used for many novel electrical components.

Cumings and Zettl [5], and Yu et al. [6] study a MWCNT system for which an
inner tube oscillates inside an outer one. They show that the frictional force between
the inner and the outer tubes is vanishingly small and hardly effects the motion, so
that to a first approximation the frictional force might be ignored. Zheng and Jiang
[7] examine a similar system using molecular dynamics simulations, and they also
suggest a frictionless oscillatory system. Qian et al. [8] and Liu et al. [9] use molecular
dynamics simulations to study a C60 fullerene inside a CNT, and the results show that
the encapsulation and the oscillation of the C60 depend on the diameter and the length of
the CNT. They show that the frequency of the C60 oscillation is in the gigahertz range.
Cox et al. [10,11] have derived formulae for the interaction energy and the frequency
of the C60 and the CNT oscillators, as determined from the Lennard-Jones potential
function and the continuum approximation. These results show that the frequency of
the C60 oscillator is a function of the length and the radius of the CNT which agrees
with Qian et al. [8] and Liu et al. [9].

Tomanek and Schluter [12] indicate that carbon atoms can form one dimensional
atomic-chain structures providing that the total number of carbon atoms is less than
20. However, Wang et al. [13] experimentally observe that a carbon atomic-chain can
be synthesized inside a CNT, and Zhao et al. [14] claim that the carbon atomic-chain
inside the CNT is stable even when it has more than 20 atoms. Since carbon atomic-
chains can transfer charge [15], such the chain inside the CNT is important for many
novel devices.

Carbon nanotori (TCNTs) [16] are formed from SWCNTs that are joined the open
ends [17]. Experimentally, the diameter of the ring and the diameter of CNT are found
to be larger than 100 and 1 nm, respectively [16]. However using molecular dynamics
simulations, Huhtala et al. [18] and Han [19] report that smaller nanotori might exist,
such as ring diameter of 22 nm with the CNT diameter below 1.3 nm. Ihara and Itoh
[20] predict that the smallest TCNT is a C120. Moreover, continuum elastic shell theory
[21] and an empirical mathematical approach [22] have been employed to determine
the shape of TCNTs.

Tang [23] reports that carbon chains are possibly encapsulated inside TCNT, and
investigates their electronic properties and persistent current. He concludes that the
intensity of current depends on the factors of the surrounding environment. Addition-
ally, Lusk et al. [24] study a similar system where the carbon chain is replaced by
a metal chain; Fe, Au, and Cu. They use the smallest TCNT, C120, to determine the

123



J Math Chem (2014) 52:1817–1830 1819

binding energy for synthesizing the system and examine the stability of the structure.
One of their results is that an Fe-chain can be encapsulated inside a TCNT and it
possesses a magnetic moment.

In the present paper, we investigate the energy behaviour of a carbon chain inside a
TCNT using the Lennard-Jones potential and the continuum approximation. The radii
of CNTs and TCNTs encapsulating a carbon atomic-chains are determined. In Sect. 2,
the method for determining the interaction energy is presented. The calculation of the
interaction energy for a nanotorus with a symmetrically located carbon atomic chain
is determined in Sect. 3. Detailed numerical results and energy profiles are given in
Sect. 4. Finally, some brief discussion and a summary are presented in Sect. 5.

2 Method

In this section, the interaction energy between the carbon atomic-chain and the nan-
otorus is obtained from the 6–12 Lennard-Jones potential and the continuous approx-
imation. For a discrete structure, the non-bonded interaction energy is obtained by the
summation of the interaction energy for all non-bonded atomic pairs

E =
∑

i

∑

j

�(ρi j ),

where �(ρi j ) is the potential function of atoms i and j with the distance ρi j apart.
In this work, the total potential is found from the continuous approximation which
assumes that all atoms are uniformly distributed over the surface of the TCNT and
the atomic-chain, and the double summation is replaced by a double integration. The
extent of the double integral is the entire surface of the TCNT, St , and the entire length
of chain, �m , hence

E = ηmηt

∫

�m

∫

St

�(ρ) dSt d�m,

where ηm and ηt are the mean atomic line density of atomic-chain and the mean
surface atomic density of the carbon atoms in the TCNT, respectively, and ρ denotes
the distance between an arbitrary atom on the TCNT and an arbitrary atom on the
atomic-chain. The 6–12 Lennard-Jones potential is given by

�(ρ) = 4ε

[
−

(
σ

ρ

)6

+
(

σ

ρ

)12
]

,

where ε is the well depth and σ is the Van der Waals diameter. For different materials,
the empirical rule is employed to determine the values of ε and σ , given by ε =
(ε1ε2)

1/2 and σ = (σ1 + σ2)/2, where ε1 and σ1 are the values for material 1 and
ε2 and σ2 are the corresponding values for material 2. The Lennard-Jones potential
function can also be rewritten as
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�(ρ) = − A

ρ6 + B

ρ12 ,

where A = 4εσ 6 and B = 4εσ 12 are termed the attractive and repulsive constants,
respectively.

3 Energy for nanotorus interacting with carbon atomic-chain

The full expression for the interaction of the TCNT with the atomic-chain is given by

E = ηtηm

π∫

−π

π∫

−π

π∫

−π

�(ρ)Rr(R + r cos φ) dθ dφ dθ1, (1)

where R and r are the radius of the nanotorus ring measured from the tube centre and
the radius of the tube, respectively, as shown in Fig. 1. The TCNT surface element is
parametrically given by

(xt , yt , zt ) = ((R + r cos φ) cos θ, (R + r cos φ) sin θ, r sin φ),

while a typical element on the carbon chain is given by

(xm, ym, zm) = (R cos θ1, R sin θ1, 0).

The distance between a typical point on the TCNT surface and a typical point on the
atomic-chain is then given by

ρ2 = r2 + 4R(R + r cos φ) sin2[(θ − θ1)/2].

θ
φ

x

y

z

R
r

x

y

z

θ1

Fig. 1 Coordinates for points on surface of nanotorus (left) and on atomic-chain (right)
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Equation (1) can be rewritten as E = ηtηm(−AD3 + B D6), where Dn(n = 3, 6)

are defined by

Dn =
π∫

−π

π∫

−π

π∫

−π

Rr(R + r cos φ)

ρ2n
dθ dφ dθ1. (2)

The analytical details for determining the final form of this integral are given in Appen-
dix 1, here we have

Dn = 4π2

r2n−2

n−1∑

k=0

(
n − 1

k

)(
2k

k

)
(−1)k Rk+1 Qk,

Qk = 2π(R + r)k+1

(2R + r)2k+1

k+1∑

i=0

(
k + 1

i

)(
2i

i

)
Li

1

22i
F

(
k + 1

2
, i + 1

2
; i + 1; L2

)
, (3)

where L1 = −2r/(R + r) and L2 = 8Rr/(2R + r)2. When the ring radius of the
nanotorus R is large comparing to r , a section of the giant TCNT can be considered as
a CNT because the curvature of the toroidal ring is very small and it can be ignored.
As a result, the interaction energy for a CNT with the carbon chain can be examined
by assuming that the ring radius R approaches to infinity. From (3), the energy per
unit length E∗ can be obtained as

E∗(�, r) = lim
R→∞

�

2π R
E(R, r) = lim

R→∞
n A

2π Rηm
E(R, r), (4)

where � is the length of atomic-chain and n A is the number of atoms in the atomic-
chain.

The expression for the interaction energy of an infinitely long CNT with an atomic-
chain of length � is given by

E
′
(�, r) = �ηmηt

∞∫

−∞

π∫

−π

�(ρ)rdθdz. (5)

The coordinates of a typical point on the CNT are given by

(xt , yt , zt ) = (r cos θ, r sin θ, z),

and the coordinates of an atom located at the origin are (0, 0, 0). Thus, the distance
between the atom at the origin and a typical point on the CNT surface is given by
ρ2 = r2 + z2, where the schematic model is depicted in Fig. 2. Equation (5) becomes
E

′
(�, r) = �ηmηt (−AJ3 + B J6), where the integrals Jn (n=3, 6) are given by

Jn = 2π

∞∫

−∞

r

(r2 + z2)n
dz.
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Fig. 2 Coordinates for point on
surface of carbon nanotube with
atom located at the origin

θ

x

y

z

ρ
r

On making the substitution z = r tan x , we obtain

Jn = 2π

r2(n−1)

π/2∫

−π/2

cos2(n−1) x dx = 2π

r2(n−1)
B

(
n − 1

2
,

1

2

)

= 2π2

(2r)2(n−1)

(
2(n − 1)

n − 1

)
. (6)

4 Results for nanotorus encapsulating carbon chain

In this section, we investigate the equilibrium state of the carbon chain inside the carbon
nanotorus. Although the expression for the total interaction energy (3) is complicated,
numerical values arising from such expression may be readily evaluated using alge-
braic packages such as MAPLE and MATLAB. The equilibrium values for the TCNT
radius R, the CNT radius r , and the interaction energy per unit length are determined.
The parameter values used in this study are given in Table 1.

Figure 3 shows the energy per atom E/ηm for R = 5, 7, 12 and 16 Å where the
radius r ranges from 3 to 6 Å. We observe that for each value R there is a corresponding

Table 1 Constants used in this
model Attractive constant [25] (eV× Å6) A = 14.8919

Repulsive constant [25] (eV× Å12) B = 23005.0954

Atomic line density of carbon
chain of (5, 5) (atom/Å)

ηm = 0.9041

Atomic line density of carbon
chain of (10, 0) (atom/Å)

ηm = 0.8696

Mean surface density of CNT [10] (atom/Å2) ηt = 0.3812

Radius of (4,4) CNT [26] (Å) r = 2.75

Radius of (5,5) CNT [14] (Å) r = 3.387

Radius of (10,0) CNT [27] (Å) r = 3.9
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Fig. 3 Energy E/ηm for radii R = 5, 7, 12 and 16 Å of nanotori, we comment that R < r

value of r in the range 3.6–3.7 Å that minimises the energy, and we comment that
for these minimum energy values, the carbon chain is assumed to be centrally located
in the TCNT. Further, the energy per atom E/(2π Rηm) for R = 5, 7, 12 and 16 Å
is shown in Fig. 4 . In this figure all four curves lie approximately on the same line,
showing that the interaction energy is virtually independent of the nanotori radius R.
When the radius r is larger than the value of the radius giving the minimum energy
rmin , the energy tends to zero as r goes to infinity. In this scenario, the carbon chain is
more likely to be located offset from the TCNT centre, because the minimum energy
location is closer to the tube wall. However, when the radius r is smaller than rmin

and the interaction energy is negative, the carbon chain is located at the centre inside
the TCNT because the minimum energy position is at the centre of the TCNT. For
the value of r that gives a positive interaction energy, the encapsulation of the carbon
chain inside the TCNT is not likely to occur because the carbon chain will face a large
repulsive energy. From Figs. 3 and 4, it is apparent that r should be at least 3.17 Å to
give a negative interaction energy, and give rise to a stable configuration.

Figure 5 shows the value of rmin at the minimum interaction energy for each
value of R. We see that rmin increases with increasing R, and rmin is approximately
3.69 Å when R is larger than 15 Å. Next we consider the minimum energy per atom
E/(2π Rηm), as shown in Fig. 6. The minimum energy per atom decreases as R
increases. We suggest that the results of Figs. 5 and 6 arise from the effect of the inter-
action energy between the carbon chain and the atoms on the opposite surface of the
TCNT. For a large TCNT, the interaction energy from the other side of the torus will
not effect to the chain since the van der Waals is a short range interaction, therefore,
the values of rmin and E/(2π Rηm) may be assumed to be constants once R is large
enough.

Figure 7 shows the energy of an atom inside a large TCNT. When the radius r is
larger than 3.69 Å, the minimum energy position is not located at the centre of the
TCNT, but it moves to one side of the TCNT because the minimum energy location is
closer to the wall of the TCNT. If the radius r is smaller than 3.69 Å and the energy is
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Fig. 4 Energy per atom E/(2π Rηm ) for radii R = 5, 7, 12, and 16 Å of nanotori

Fig. 5 Relation between rmin and R at the minimum energy value

negative, the chain is centrally located in the TCNT as the minimum energy location
is at the center of the TCNT. The chain can not be encapsulated in the TCNT once the
radius r is less than 3.17 Å since the energy is positive.

We find that E∗(�, r) = E
′
(�, r), for the same values of � and r , so the discussion

for a CNT with a carbon chain can be considered either from (4) or (6). In (4), we may
take R to be infinity so that the curvature of the TCNT is very small and the TCNT can
be replaced by the CNT. Alternatively, we can simply calculate the interaction energy
of an atomic chain inside the CNT using (6).

In order to make a comparison with the numerical results given in [26] and [27], the
(4,4), (5,5), and (10,0) CNTs are examined. The results show that the (5,5) and (10,0)
CNTs with centrally located carbon chains are stable and with interaction energies
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Fig. 6 Value of minimum energy as a function of nanotorus radius R

Fig. 7 Interaction energy E∗/ lηm as a function of nanotorous radius R where R is assumed to be large
and nanotorus can be replace by nanotube

−1.04 and −1.29 eV, respectively. However, the radius r of a (4,4) CNT is too small,
and the interaction energy of the system is positive. These results are consistent with
the results presented in [26] and [27]. Figure 4 shows that the radius r must be greater
than 3.17 Å, otherwise, the interaction energy will be positive and the carbon chain
cannot be inside the CNT. The radius r at the minimum energy location of the CNT
is around 3.69 Å which is consistent with the study of Hu et al. [28] who predict that
the radius of the innermost carbon nanotube with the carbon chain is approximately
3.63 Å. Some calculation details for the cases of (5,5), and (10,0) CNTs are presented
in Appendix 2.
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5 Discussion and summary

The mechanics of a system comprising a carbon chain inside a TCNT have been studied
using the Lennard-Jones potential and the continuum approximation. Formulae for
the interaction energies between TCNTs and CNTs with the carbon chain have been
derived and they are given by (3) and (6), respectively. We have found that a value
of the TCNT radius that gives the minimum energy, rmin , is around 3.69 Å. Further,
for a TCNT of a ring radius R smaller than 15 Å, rmin decreases and ranges from 3.6
to 3.7 Å. The interaction energy increases for R less than 5.2 Å. We predict that the
radius r of the TCNT must be larger than 3.17 Å for the chain to be stable inside the
TCNT. In the case of conventional (4,4), (5,5), and (10,0) CNTs, we can use either (4)
with R tending to infinity or directly from (6) to determine the energy of the system.
We predict that the (5,5) and (10,0) CNTs can encapsulate a carbon chain but the
(4,4) CNT cannot, and these results are consistent with the results presented in [26]
and [27]. Moreover, the radius rmin at the minimum energy location of the CNT is
approximately 3.69 Å which shows an excellent agreement with the study of Hu et
al. [28] who predict that the radius of the innermost carbon nanotube with the carbon
chain is approximately 3.63 Å.
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Appendix 1: Interaction of nanotorus with carbon atomic-chain

In this appendix, we simplify the expression (2) for the interaction of the nanotorus
with the circular atomic carbon chain,

Dn =
π∫

−π

π∫

−π

π∫

−π

Rr(R + r cos φ)

ρ2n
dθ dφ dθ1,

since ρ depends only on the difference (θ − θ1) we may deduce

Dn = 2π

π∫

−π

π∫

−π

Rr(R + r cos φ)

ρ2n
dθ dφ,
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where ρ2 = r2 + 4R(R + r cos φ) sin2(θ/2). On defining the integrals In as

In =
π∫

−π

1

ρ2n
dθ =

π∫

−π

1

[r2 + 4R(R + r cos φ) sin2(θ/2)]n
dθ

= 2

π∫

0

1

[r2 + 4R(R + r cos φ) sin2(θ/2)]n
dθ.

Upon making the substitution t = sin2(θ/2), we obtain

In = 2

r2n

1∫

0

t−1/2(1 − t)−1/2

[1 + 4R(R + r cos φ)t/r2]n
dt,

which can be written in terms of the hypergeometric function F(a, b; c; z) with
a = n, b = 1/2, c = 1 and z = −4R(R + r cos φ)/r2, so that we have

In = 2π

r2n
F

(
n,

1

2
; 1; −4R(R + r cos φ)

r2

)
.

Then on truncating the hypergeometric series using the transformation F(a, b; c; z) =
(1 − z)−b F(c − a, b; c; z/(z − 1)), we may deduce

In = 2π(r2 + 4R(R + r cos φ))−1/2

r2n−1 F

(
1 − n,

1

2
; 1; 4R(R + r cos φ)

r2 + 4R(R + r cos φ)

)
.

Now, the hypergeometric function can be expanded in the series form

F(−m, b; c; z) =
m∑

k=0

(−m)k(b)k

(c)kk! zk,

therefore In becomes

In = 2π

r2n−1

n−1∑

k=0

(1 − n)k(1/2)k

(1)kk!
(4R)k(R + r cos φ)k

[r2 + 4R(R + r cos φ)]k+1/2 ,

this gives

Dn = 2π

π∫

−π

In Rr(R + r cos φ)dφ = 4π2 R

r2n−2

n−1∑

k=0

(1 − n)k(1/2)k

(1)kk! (4R)k Qk

= 4π2

r2n−2

n−1∑

k=0

(
n − 1

k

)(
2k

k

)
(−1)k Rk+1 Qk,
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where

Qk =
π∫

−π

(R + r cos φ)k+1

(4R2 + r2 + 4Rr cos φ)k+1/2 dφ = 2

π∫

0

(R + r cos φ)k+1

(4R2 + r2 + 4Rr cos φ)k+1/2 dφ.

Next, we use cos φ = 1 − 2 sin2(φ/2) to give

Qk = 2

π∫

0

(R + r − 2r sin2(φ/2))k+1

((2R + r)2 − 8Rr sin2(φ/2))k+1/2
dφ,

and upon letting t = sin2(φ/2), we obtain

Qk = 2(R + r)k+1

(2R + r)2k+1

1∫

0

t−1/2(1 − t)−1/2(1 + L1t)k+1

(1 − L2t)k+1/2 dt,

where

L1 = −2r/(R + r), L2 = 8Rr/(2R + r)2. (7)

Next on using the binomial theorem

(1 + L1t)k+1 =
k+1∑

i=0

(
k + 1

i

)
Li

1t i ,

we obtain

Qk = 2(R + r)k+1

(2R + r)2k+1

k+1∑

i=0

(
k + 1

i

)
Li

1

1∫

0

t i−1/2(1 − t)−1/2

(1 − L2t)k+1/2 dφ,

and the integral may be changed into the hypergeometric form with, a = k + 1/2,

b = i + 1/2, c = i + 1 and z = L2

Qk = 2(R + r)k+1

(2R + r)2k+1

k+1∑

i=0

(
k + 1

i

)
Li

1
�(i + 1/2)�(1/2)

�(i + 1)
F

(
k + 1

2
, i + 1

2
; i + 1; L2

)

= 2π(R + r)k+1

(2R + r)2k+1

k+1∑

i=0

(
k + 1

i

)(
2i

i

)
Li

1

22i
F

(
k + 1

2
, i + 1

2
; i + 1; L2

)
.
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So that in summary we have the formulae

E = ηtηm(−AD3 + B D6),

Dn = 4π2

r2n−2

n−1∑

k=0

(
n − 1

k

)(
2k

k

)
(−1)k Rk+1 Qk,

Qk = 2π(R + r)k+1

(2R + r)2k+1

k+1∑

i=0

(
k + 1

i

)(
2i

i

)
Li

1

22i
F

(
k + 1

2
, i + 1

2
; i + 1; L2

)
,

where L1 and L2 are defined by (7).

Appendix 2: Interaction energy for carbon chain inside nanotube

In this appendix, we show the calculation of the interaction energy for (5,5) and (10,0)
CNTs. Firstly, we assume that carbon chain consisting of ten atoms is located inside
the (5,5) CNT, where the CNT has the radius of 3.387 Å and the value of the C-C bond
length is taken from [14] where it is 1.229 Å, so that

� = 9 × 1.229 = 11.061, ηm = 10/11.061 = 0.9041.

Therefore, we consider

E∗(11.061, 3.387) = lim
R→∞

11.061

2π R
E(R, 3.387).

For the second case, we consider a carbon chain consisting of ten atoms located inside
the (10,0) CNT. The CNT has the radius of 3.9 Å and the length of chain is taken from
[27] which is 11.5 Å, then we have

� = 11.5, ηm = 10/11.5 = 0.8696.

Hence, the interaction energy can be obtained as

E∗(11.5, 3.9) = lim
R→∞

11.5

2π R
E(R, 3.9).
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